Work Book/log FISKARS® ## **DESP:2000 2019/20 - PROJECT 2** #### **Digital Prototyping of a Hand Cranked Hoist proposal** - with the existing product-form taken from one of three brands #### DESIGN REQUIREMENTS Form Redesign of the existing product form, which must remain reflective of the existing brand culture and accommodate the key product features, functions and interactions Technical Design requires a detailed modelling and specification of the structural & articulating components, detail of the gear-train, necessary hoist features easy of operation by the operator and for managing the pay-load, wheel assembly, bearing sub-assembly where relevant. #### **CAD MODELLING OUTPUTS** A full digital prototype is required, which will include a detailed proposition of all ASSEMBLY COMPONENTS, SUB-ASSEMBLY OF GEAR TRAIN, SUB-ASSEMBLY BEARING DETAILS General Assembly and Sub-Assembly arrays will be modelled in full detail. In modelling this prototype consideration must be given to the hoists' general operation and issues of feasible manufacture, product assembly, ongoing maintenance regimes and disassembly. Design guidelines and digital-modelling guidance shall be provided in respect of product usability, product functions, user-interactions, design of fabricated or formed frames, stock componentry where relevant, assembly detailing if assemblies to form the general assembly Drive - De Vilbiss Healthcare hcare Harnser Solutions FISKARS Logistics https://www.drivedevilbiss.co.uk/ http://www.harnsersolutions.com/ https://www.fiskars.com/en-gb Health Care Application Hand Operated Geared Winch Construction Applications Hand Powered Geared Winch Loading Moving Logistics Appl Hand Powered Geared Winch #### Project 2 Submission Banner Proposal PDF + Print Output - Branding Rational of Proposal Form Mood Board, Adjectives Word Cloud - Proposal Sketch-Book Pro Rendered Elevation Visuals Front, Side, Plan - Perspective Digital Visuals 3 view points - Exploded Assembly Visual 1 view Points - Scaled Technical Drawing Elevations Front, Side, Plan - 3D-PDF of completed assembly model exclude from banner PDF + printed banner - 3D PDF of assembly components exclude from banner PDF + printed banner - Full set of General Assembly, Sub Assembly and Part Technical Drawings - 120 second video composition illustrating the products' brand-form, key functions, interactions and assembly nomenclature #### SUBMISSION COMPONENTS - Proposal Banner PDF + proposal-narrative video file shall be uploaded - Proposals Banner PDF shall be printed - Personal VIDEO composition shall form part of a show-reel of the entire groups' submissions **14** | Page **16** | Page # **DESP:2000 CAD for Products Designers 2: Project 2 2019/20** Project 2 2019/20 Digital-Prototype-Modelling of a Hand Cranked Hoist re-design proposal | Digital | - | | | | | |-----------------------|---|---|---|--|--| | | | TUTOR DIRECTED STUDY | In Wallahara | | | | Study | Luarum Contro | Rm: 1.32 CAD LA
1.5 hrs pe | | | | | Weeks | Lecture Series
1hr per week | Digital Prototyping Process Phases | Recorded Tutorials +
Published PDF tutorials | SELF-DIRECTED STUDY
8.5 hrs per week | | | Week 15
06/01/2020 | PROJECT WEEK 1 Project Process Overview Digital Prototyping of Functional Performance Solidworks Analytical Tools Video Based proposal Narratives | SW Motion Study
Linkage + Structure
Modelling | Modelling 'structural-rig' of
the existing product
configuration
Prepare a base animation of
the movement limits | GENERATE SKETCHBOOK PRO
SCALED RENDERED ELEVATIONS
Based on the existing product
configuration generate concepts
visuals of re-designed product brand
form | | | Week 16
13/01/2020 | Application of Digital Analytical Tools in Product Development | Solidworks
Framework Form Modelling | Modelling a brand re-design
of the 'structural-rig' of the
existing product configuration | UNDERTAKE MODELLING OF
STRUCTURAL ELEMENTS AND
PRIMARY HOIST FUNCTIONS –
movement scope and range
Apply re-brand-design culture from
inserted Sketchbook Pro- renders | | | Week 17
20/01/2020 | PROJECT WEEK 3 Iterative Digital Modelling in optimising functional performance | Solidworks FEA | Modelling a test of the load-
structural capacity and
balance of the lift function | UNDERTAKE MODELLING OF
HOIST FEATURES – consider
assembly issues, usability and
manufacturability | | | Week 18
27/01/2020 | PROJECT WEEK 4 Gearing Principles, Types and SW gear mate feature | Solidworks
Gear-mate | Modelling a gearing assembly
and animating gearing
advantage | COMPLETE A SCHEMATIC MODE
OF THE GEAR-TRAIN – undertake a
motion study to demonstrate
performance parameters | | | Week 19
03/02/2020 | PROJECT WEEK 5 Detailing of engineered mechanisms as SW models | Modelling
Sub-Assemblies | Modelling bearing
subassemblies of a handle -
drive acting on a gearing
mechanism | COMMENCE RESOLUTION OF
THE DIGITAL PROTOTYPE
Resolve finalisation of Master File
details, part-files sand sub-assembly
files. ARCHIVE FILES | | | Week 20
10/02/2020 | PROJECT WEEK 6 BS888 standards and the contemporary alternative – Model Based Definition | BS:8888 overview Review on GA's + Part Files + Sectional Details Dimensions | Review case study of tech
drawings submission —
Strategy for Layout of GA,
Component, Sub-Assemblies | DEVELOP GENERAL ASSEMBLY
MODEL -
Based on part files + sub-assemblies,
plus the Masterfile. ARCHIVE FILES | | | Week 21
17/02/2020 | PROJECT WEEK 7 B5:8888 Tolerances + Tolerancing Strategies | BS:8888 Tolerances +
Tolerancing
Strategies for
general assembly,
sub-assembly and single
part components | Case Study Exercises Dimensioning of drawings and applying Tolerancing of Geometry, Dimensions and assembly fits | GENERATION OF TECHNICAL
DRAWINGS
GA, Sub assembly, Part Drawings as
sheet layouts with consideration of
scale, areas for dimensioning and
notation. ARCHIVE FILES | | | Week 22
24/02/2020 | EMPLOYABILITY WEEK | | PROGRAMMED ACTIVITIES | 5 | | | Week 23
02/03/2020 | PROJECT WEEK 8 Compiling Proposal Technical Drawings + Specification Notation | SW Visualise scripted
animations | Generating scripted
animations of product
functions + performances | DIMENSIONING AND SCHEDULE OF TOLERANCES on geometry, dimensions and fits across all drawing sheets | | | Week 24
09/03/2020 | PROJECT WEEK 9 Compiling Product Proposal Video Narratives | Adobe Premier
Compositing
multiple-aspect video
presentations | Compile video narratives of
product form, interactions
and performative functions | CRIPTED ANIMATION PROPOSAL FUNCTION Generaling scripted animation of your proposal product function + performance | | | Week 25
16/03/2020 | PROJECT WEEK 10 PREVIOUSLY RECORDED Bonus Lecture SW - Topology Optimisation | PRPOJECT 2A Technical Drawings
uploaded 09:00am 16/03/2020
Technical Drawings Presentations
Groups C & D | PROPOSAL SHOW REEL CLIP Compile video narrative of product form, interactions and performative functions — use animations, stills, apply timed-annotation | | | | Week 26
23/03/2020 | PROJECT WEEK 11
PREVIOUSLY RECORDED
Bonus Lecture
SW – Fatigue Analysis | Technical Drawings Presentations
Groups A & B | COMPILE PROJECT SUBMISSION – see the submission requirements To be completed well in advance of the submission deadline | | | | Week 27
30/03/2020 | PROJECT WEEK 12 PREVIOUSLY RECORDED Bonus Lecture SW – Model based definition | PROJECT 2b All individual complet
uploaded by Monday 09:00am 30,
Studio Pin-up of Proposal Presenta
Screening of Proposal Video Presen | <mark>/03/2020</mark>
tion Banners | PORTFOLIO BUILDING PRACTICE accessing support materials NB: CAD Lab is Booked for standard tutorial times | | **17** | Page # Project 2A Technical Drawings ## Layout and Presentation - 10 The information provided is perfect / very near perfect - OB The layout is clear and the presentation is appropriate, but minor improvements could be made - 06 Wrong / inappropriate views have been submitted, but on balance the layout is clear and the - 04 Not all the information has been presented and wrong / inappropriate views have been submitted - 02 The information provided is extremely poor; the USB could not be manufactured from this - 00 No information was submitted ## General assembly Page - 10 The information provided is perfect / very near perfect. - Oil The GA clearly shows the product being produced, the parts to produce to make this product and where the manufacturing information about those parts can be found. - Of The GA shows the product being produced but as an index to the technical document it could be clearer. - 04 The GA neither clearly shows the product being produced nor provides an index to the technical document. - 02 The GA is little more than an orthographic view - 00 No information was submitted #### Presentation of Technical Drawings - 10 The information provided on the technical drawings is complete - 38 The information provided on the technical drawing is excellent; very few questions are raised when studying the document. - 06 The information provided on the technical drawings is good, some questions are raised when studying the document - The information provided on the technical drawings is adequate; but further information would be required to manufacture the USB - 02 The information provided on the technical drawings is very poor - No information was submitted #### Ability to manufacture the parts from this document - 10 The USB can be fully manufactured from the information provided - 08 The USB can be manufactured from the information, but may not be fully accurate - 06 The USB can be manufactured from the provided information with only minor questions needing to be asked of the designer - 54 The USB can be manufactured from the provided information, but major information is required from the designer - 02 The USB cannot be manufactured from the provided information - 00 No information was submitted # Selection of tolerances and manufacturing processes for all # the USB parts - 10 The information provided is perfect / very near perfect - OB The tolerances provided can be accurately manufactured from the information and they fit in most iteration - 06 The majority of tolerances provide work but some are wrong - O4 There are some tolerances provided that work but the majority are wrong - 02 The tolerances provided will not work in reality - No information was submitted 15 | Page Brief and Marking Criteria | Week Set | Task | Completed? | Feedback | |----------|---------------------|-------------|--| | 15 | Build Frame | Yes | Relatively easy to do, followed well and was able to recreate in spare time | | 15 | Stress test | Yes | Slightly confused in tutorial but followed guide at home and understood it better. | | 15 | Design Board | Yes | Design board completed | | 15 | Initial Design Page | Not started | - | | 15 | Brand Page | Not Started | | Primary Form Research Secondary Form Research Initial Design Drawings Development Design Drawings Initial Frame form from drawings (Model 1) # Heavy Duty Polyurethane on Cast Iron Castors. This range of Heavy-Duty castors manufactured in Germany have a strong cast iron centre and bonded with High- Grade polyurethane tread. And strong pressed steel brackets with a zinc and chromated finish. (The swivel version has a high-quality thrust ball bearing and a tapered roller bearing for accurate guidance of the kingpin). It offers you a Non-Marking tread, excellent resistance to abrasion and impact and has a high resistance to oils and | | CODE | WHEEL
DIAMETER
(MM) | TREAD
WIDTH
(MM) | CASTOR
HEIGHT (MM) | TOP PLATE
SIZE (MM) | BOLT HOLE
SPACING (MM) | OFFSET
(MM) | BOLT HOLE
DIAMETER (MM) | LOAD
CAPACITY
(KG) | AVAILABLE
STOCK | |--------|---------|---------------------------|------------------------|-----------------------|------------------------|---------------------------|----------------|----------------------------|--------------------------|--------------------| | | P4256 | 100 | 35 | 129 | 105x85 | 80x60 | - | 9 | 250 | 3 | | 5 | P4246 | 100 | 35 | 129 | 105x85 | 80x60 | 46 | 9 | 250 | 4 | | Rubbat | hane Ty | /re | | | | ⊢ B - | 4 | | | | Front Wheel Dimensions Range: Wheels & Castors Category: Heavy Duty Industrial Wheels Group: Rubbathane Tyred Wheels Style: Rubbathane Tyre Search on complete or part product code Brauer industrial 'rubbathane' tyred wheels are made from a specially formulated polyurethane material to mimic the characteristics of rubber but with the added benefits of longer life and improved wear. Rubbathane are the least expensive type of tyred wheel and are most suitable for midrange loads. Rubbathane wheels from Brauer are non-marking, quiet in operation and tested to ensure they out-perform other wheels in their class. | Part No. | Α | В | С | D | Е | Max Load Kg | Weight Kg | | |----------|-----|----|----|----|----|-------------|-----------|---------------| | R100/40 | 100 | 40 | 45 | 63 | 45 | 290 | 1.5 | Show Variants | | R125/30 | 125 | 30 | 35 | 58 | 40 | 280 | 1.5 | Show Variants | | R150/50 | 150 | 50 | 55 | 63 | 45 | 580 | 3 | Show Variants | | R200/40 | 200 | 40 | 50 | 65 | 50 | 580 | 4 | Show Variants | **Back Wheel Dimensions** FISKARS® Secondary Form Research Revised frame form from initial design (Model 2) Model 2 Stress Test Model 2 Displacement Test From the model 2 testing stage, I found out that the structure was too weak and was bending due to the downwards pressure. The main hotspots where the material was bending was between the curve int the framework at the bottom, to the curve in the framework at the top. To try and counter that weakness, in this design of the model I have added a middle support beam that runs vertical to the design and connects to the top and bottom horizontal support beams. I have also increased the diameter of the frame from the bottom curve upwards to increase the strength. Revised frame form from Model 2 (Model 3) Model 3 Stress Test Model 3 Displacement Test FISKARS® Model 3 Strain Test Due to the material weakness points I have identified in the previous models stress test, I have made design changes to reinforce the framework. I identified the weakness in the design was coming from the curve at the base of the design. I have decided to add an additional horizontal support beam to help distribute the stress at the curve of the framework. This has been attached to the already existing horizontal beam. I have also increased the diameter for the whole framework. Revised frame form from Model 3 (Model 4) On this page you can see the addition of the CAD imported wheels and the refinement of the Gearbox shape, positioning and attachment to the main frame. The wheels I have used are an import sourced from a CAD website. I have attached them roughly to pipes extruding from the main framework to get a sense of size and proportion. I still need model a way for them to attach properly. I have modeled the gearbox to attach to the main frame through sandwiching it between the two horizontal frames. It will then be fastened by nuts and bolts. Wheel Attachment and Gearbox casing Refinement Below shows the mechanism I have created to fit inside of my gearbox for the hand cranked hoist. I drew inspiration for the mechanism from the CAD wrench file that was provided from the module leader in blackboard. The only design change I made between the two was the ball bearing and spring position in the mechanism. The ball bearing and springs job is to prevent the variable winch from moving on its own. On the wrench, it is positioned at the bottom whereas on mine it is positioned horizontally behind cogs. FISKARS® Internal gearbox Mechanism Above: the two halves of the injection moulded gearbox casing Gearbox Casing Gearbox subassembly Exploded view # Washers for Wheels and flat bar attachment The screenshot on the left highlights the washers for the wheels and the flat bar attachment. The 'Wheel washers' were designed to allow the wheels to sit properly on a flat surface. Due to the base pipes unusual triangular design, the wheels could not sit flat on the surface. The flat bars were an additional design feature added during the modelling process. It allows the user to rest some of the weight of the stock onto it as it is being transported. # Gearbox to main frame attachment washers The washers highlighted in red, right, were designed and modelled to ensure that the gearbox was secured tightly. Due to a lack of flat surfaces, I designed two injection moulded pieces to fit around the framework to create a flat surface for the screw, and to stop the gearbox rattling between the two framework pipes. Extra components Final Renders